

3D GPU

 Final Report

Upsham Dawra (Tuesday 2.30pm)
Will McGrath (Thursday 2.30pm)
Vishal Gala (Thursday 2.30pm)

ECE 337
TA: Nitin Nitin

Submission date: 10/29/10

1) Executive Summary

Our group built a basic 3D Graphics Processing Unit. Our GPU is able to take 3D points
representing lines and render an image. This represents the basic functionality of any GPU and will
serve as a starting point for potential future extensions, added features and optimizations.

The GPU we created provides an easily extensible framework to develop a more advanced
GPU. Creating a GPU with performance similar to any commercial product designed in the last ten
years from scratch is an intractable problem. However, a simple GPU with the same basic
components as a more complex GPU provides a good launching point from which to add more
functionality and increase its performance.

Dedicated graphics processors got their start in the early 90‟s when computer programs
became more graphically demanding. They were created to allow the CPU to offload graphical tasks
to dedicated hardware, specifically designed to be able to handle highly parallel, floating point
arithmetic-intensive tasks. GPUs are ASIC by nature; they must handle well-defined graphical
operations as quickly as possible. A standard microcontroller would be utterly unsuitable for acting as
a GPU, because of its single thread of execution.

The following sections discuss the I/O characteristics of our design, our optimizations and an
overview of the structure of the design. They will also relate our success criteria and what we did to
meet them. Last, we will include the layout that we produced and the layout characteristics that we
found.

2) Design Specifications

2.1) Operational Characteristics

a) Table of external inputs and outputs.

Signal Name Type
IN/OUT/BIDIR

Number of
bits

Description

PWR - - To power the chip.
GND - - The ground for the chip.
RST_N IN 1 A asynchronous reset for the memory

elements in the design.
CLK IN 1 The CLK for the chip.
OPCODE IN 8 The opcodes for performing

instructions and the addresses of data
on which the instructions should be
executed.

RAM_IN_USE IN 1 Signal to indicate the GPU not to
operate on the external RAM as the
processor is operating on it.

DATABUS IN/OUT 16 The data read from the RAM or written
to the RAM.

STRB_IN IN 1 Signal to strobe the opcode into the
GPU

ADDR_OUT OUT 16 The address to load data from the
external RAM.

RE_OUT OUT 1 Signal to indicate the processor that
GPU is operating on the RAM.

GPU_DONE OUT 1 Signal to indicate when the GPU has
done it's processing completely.

WE_OUT OUT 1 Signal to set the RAM to write mode.

Table 2.1.1

Figure 2.1.1

b) Operational Description:

In order to implement a GPU in the time available, we have made several important
simplifications to the functionality of a standard commercial GPU. First, we are performing all
calculations using 16 bit integers instead of floating point numbers. Support for floating point
numbers would take far more area and time than we have available. However, we decided to
internally represent decimal precision as (decimal numbers * 256). This gives us a range of -128 to
127 with a maximum precision of 1/256, or .003. This is effectively a fixed-point decimal. Thus, 10
in decimal would be represented as 9*256, or 2304 in decimal or 900 in hexadecimal. The number
256 was chosen because it is a power of two and dividing by it to turn the number into an integer is a
simple bit shift. These numbers will be used for the input points as well as the input matrices. This

means that for a line primitive the RAM will store 12 bytes (6 bytes for each point) of data
contiguously.

Our solution adopts a similar approach to OpenGL by using a “World Transform Matrix”.
This is a 4x4 transform matrix that encodes information about rotation about all three axes, scaling,
and translation. Our processor will be able to load this matrix from its RAM. The intended usage
scenario is that the accompanying general purpose processor will place the prepared transform matrix
in the RAM along with the 3D coordinates of the lines to be rendered. The processor will then send
opcodes to our GPU load a transform matrix, and draw lines. The load matrix and draw line
commands will reference a memory address in the RAM and the GPU will load the relevant 16 bit
numbers, as discussed earlier. After loading the matrix and the two points of a line, our GPU will
multiply them together to get the scaled, translated, and rotated endpoints of the line. We will use a
simple orthogonal projection to represent our scene, so we will throw out the Z component of each
point to get the screen coordinates of the endpoints. These endpoints will then be sent to our
rasterizer. The rasterizer will use Bresenham‟s algorithm to determine the points in the frame buffer
that should be shaded and write the proper information to the frame buffer.

The approach of using a world transform matrix makes loading objects defined in their own
coordinate systems very convenient. If the user wanted to draw a cube that was defined with sides of
length 1 in object coordinates as a cube with side length 2 at the point (1,2,3), all that is required is a
transform matrix including a scale of 2 and a translation of (1,2,3). The next step is to input the lines
that define a cube centered at the origin and the cube would be drawn in the desired location at the
desired scale. In order to draw another cube at a different location or orientation, the user only needs
to input a different world transform matrix and issue the same set of opcodes for drawing the cube.

c) Algorithms:

Our design implemented two algorithms related to graphics processing in hardware. We were
able to perform matrix multiplication between a 4x4 transform matrix and a 4x1 vector representing a
point in 3D space. The 4x4 matrix allows us to encode rotations, translations and scaling. Matrix-
Vector multiplication involves multiplication and addition operations. We managed to get a signed
multiplier and adders working. The multiplier was made combinational by making it process one
matrix row and one point at a time. So, at one time, it would use this data to calculate one coordinate
of the result (multiply the point and row data, and then add them) and shift that out to a buffer, and
then ask for new point/row data as needed. Four points were calculated for one operation, which
would be x1, y1, x2, y2 in that order. We also perform rasterization of lines using an modified
implementation of Bresenham‟s algorithm. The algorithm is based on the idea of iteratively turning
on the pixel that would result in the lowest error between the generated line of pixels and the „ideal‟
line. The modifications allow the algorithm to deal with integer start and end points, and any slope.
Our implementation uses no signed arithmetic and uses bit shift to multiply and divide. The algorithm
proceeds as follows:

Ram	
Address

Contents

Description

0

16	 Bits	 per	 address	
(one	 per	 pixel)

Frame	 Buffer

1
…

4094
4095
5000 Mat(1,1)

World	
Transform	
Matrix

5001 Mat(1,2)
… …

5015 Mat(4,4)
5016 X0

Line	 Primitive

5017 Y0
5018 Z0
5019 X1
5020 Y1
5021 Z1

1. Determine the magnitude of the difference between x2 and x1, and between y2 and y1, dx and
dy respectively and set the increment direction variables iX and iY appropriately.

2. If dy>dx, the line is steep. Set steep to 1 and swap the values of iX and iY, X and Y, and dx
and dy.

3. Begin at the first given endpoint. Set the total error to 256. Start at pixel x
4. Add dx to the error. Add 1 to x.
5. If the error is greater than 256, subtract dy from error and add 1 to y.
6. Turn on the pixel x,y, or if steep =1, turn on pixel y,x
7. Go to step 2 until x equals the x of the right endpoint.

When the algorithm specifies that we should turn on a point, it calculates the memory address
of that point and which bit of that address‟s data the pixel corresponds to. It sends this information to
the controller to be written to memory. The swapping in the second step is necessary because the
algorithm can at most increase x and y by one each iteration. Thus, for a line with a slope greater than
1, it will not be able to keep up. However, a line with slope of greater than 1 will by definition never
increase by more than 1 in the x direction, when y increases by one, so swapping resolves the issue.

c) Format of data input and data output

The GPU is controlled by opcodes sent by the
processor, with a hex value of “0001”
representing “load matrix starting at <address>”
and “0002” representing “draw the line found at
<address>”. In this case the address is a 16 bit
hexadecimal number. Figure 2.1.3 shows the
corresponding information in the RAM. The
frame buffer is fixed from 0 to 4095, while the
arguments for the opcodes can refer to data
anywhere in the RAM that is not the frame buffer.

Opcode Address

1

5000

2 5016
… 5022

Figure 2.1.2- Example opcode sequence

Figure 2.1.3- Example contents of RAM

2.2) Requirements:

Since the purpose of a GPU is to accelerate graphics calculations, our main focus for
optimization was speed. We attempted to structure our design so that the internal data flows
efficiently and is properly buffered, especially when performing lengthy calculations such as matrix
multiplication.

An effective GPU not only can perform arithmetic swiftly, but it can also communicate with
the CPU, system RAM, and its dedicated RAM quickly, in order to receive commands, output results,
and cache intermediate values. Thus, memory and I/O throughput are important considerations in the
design of a GPU and we tried to optimize them appropriately.

3) Final Design:

Figure 3.1.1

The top level design is shown as above. Now we shall discuss each of the above blocks, with RTL level
discussions for the ones with significant complexity.

3.1) Block Diagrams

1) Controller - The controller receives the instructions to be performed from the processor/micro-
controller. It also receives and sends signals to the processor/micro-controller to indicate that it is
using the RAM currently. The data received from the processor is interpreted in chunks of 16 bits of
data. It sends the address of data to be loaded to the external RAM. It sends signals to the World
Matrix and Co-ordinate buffer to load the data from the RAM. It also sends/receives a signal to/from
the Matrix Math to start the process on the data and to indicate completion of the process. It sends

signals to the Rasterizer to indicate that the data is valid and it can start rasterizing it. It receives a
signal from the rasterizer to indicate the completion of its process. Overall, it controls the data flow
and operation of the rest of the blocks. The controller has muxes, combinational logic and registers as
shown in the Figure 3.

Figure 3.1.2

2) Matrix Math -It receives a signal from the Controller to multiply the matrices. It multiplies the
4x4 transformation matrices with the 4x1 input vectors to facilitate translation, rotations and scaling
of the line primitive. It gets the three coordinates of a point and one row of the World Transform
Matrix at a time, multiplies them and adds them to produce one transformed co-ordinate. The result is
outputted to the Screen Coordinate buffer, and signals like row_sel and sel are used to ask for the next
line/point. This process is repeated 4 times to get the x1, y1, x2, y2 of the line to be rendered. Finally,
a done signal is asserted to the controller. At the RTL level, this block has 3 signed multipliers and

three adders implemented combinatorially. Also, there is a state machine to help choose the correct
value from the combinational block (which has massive delays) and also asserts the correct signals to
ask for the next point/row data as needed.

Figure 3.1.3

3) Rasterizer - The rasterizer reads the line primitive stored in the Screen Co-ordinate buffer and
calculates the pixels that need to be turned on between the endpoints using Bresenham's Algorithm.
As described earlier, the algorithm begins at one endpoint, classifies the slope of the line, and
iteratively determines the x and y coordinates of the next point in the line. It makes this decision
using a running estimation of the error between the point and the ideal „correct‟ line. These operations
require addition, subtraction, multiplication, and division. Fortunately, an implementation of the
algorithm was found online that only divided or multiplied by a factor of two. This was incredibly
beneficial, as it removed the need for any slow and complex multiplier or divider blocks in the
rasterizer.

The structure of the vhdl code for the rasterizer was essentially a state machine, with a different state
for each step in the procedure of the algorithm. While this method was effective for coding and
debugging, it is not evident how the design software managed to produce a synthesized version of the
code. The output was both quick and relatively small, which saved us the time of planning out a
datapath and interface logic for it. The included rtl diagram represents a realization of the algorithm
based on the datapath approach, the adder, subtractor, and comparators are muxed to all of the data
storage flops and counters. The software may have produced something completely different.

Figure 3.1.4

4) Screen Coordinate Buffer – The screen coordinate buffer stores the output of the Matrix
math as two (X,Y) points, with X and Y as 16 bit fixed-decimal numbers. These points represent the
coordinates of the 3D points after they have been projected onto the screen. It makes this information
available to the rasterizer.

6) World Matrix Buffer – The world matrix buffer stores the transformation matrix read from
the RAM and provides it as an input to the matrix math block. This matrix affects all lines read in
from RAM.

7) Coordinate Buffer – The coordinate buffer stores the primitive line read from the RAM as
two (X,Y,Z) points, where X,Y, and Z are all 16 bit fixed-decimal point numbers. It provides the
points as inputs to the matrix math block.

3.2) External Devices

Our GPU is able to interface with an 16 bit external ram and a general purpose processor or
micro-controller. The processor will first load the external RAM with the transform matrix and lines
that it wants the GPU to operate on. Then the processor will send op-codes to the GPU along with a
16 bit address which are interpreted by the GPU 16 bits of data at a time. The GPU executes the
instruction on the data from the RAM and outputs it to the frame buffer in RAM. There are two
instructions: Load a primitive line (which consists of two coordinates) and load the world matrix
(which loads a 4x4 transformation matrix). The load instructions are accompanied by a 16 bit address.
The data is loaded from the RAM in chunks of 16 bits.
To ensure that the GPU can process data quickly, it is clocked at 100MHz. Both the RAM and the
master processor will likely operate at a slower frequency. Thus, the controller block of our GPU is
designed such that it is lenient in terms of timing requirements with external devices. We expect the
RAM to have a 10 ns access time, but include a wait state, so that a marginally slower RAM will be
read correctly. Additionally, for our opcode interface, we use a signal that the processor can assert
when the current opcode or argument is valid, so that we do not impose an unreasonable timing
constraint on the device. These features allow our GPU to operate correctly with a wide range of
external RAMs and microprocessors, including the 68HCS12 from ECE 362.
In order for our GPU to coexist with an external RAM that is shared with a processor, our GPU‟s
controller is intelligent enough to let the processor know when it is using the RAM and wait if the
RAM is in use by the processor. It shares the addressing and data interfaces for the RAM by
implementing Hi-Z outputs when the GPU is not using the RAM.

Figure 3.2.1

3.3) Timing and Area Budgets:

We were given Fixed Sucess critera to keep the area under 3mm x 3mm and the pin count
under 40. Our target clock rate was set to be 10 ns. We first caluculated the area and timing budget
for our design manually. As the project progressed we were able to get the timing and area budgets
from the sysnthesis and after genrating the layout.

The table of the area and timing budgets from sysntehesis , SOC Encounter and Design Budgetting
are given below:

 Design Budgetting Synthesis SOC Encounter
Core Area (mm2) 3.82 3.03 5.28
Total Area (mm2) 7.21 N/A 8.51
Critical Data Path Matrix_math-

World_matrix_buffer/Co
ordinate_buffer-
Matrix_math-
Screen_Buffer

Matrix_math-
World_matrix_buffer-
Matrix_math-
Screen_Buffer

Matrix_math-
World_matrix_buffer-
Matrix_math-
Screen_Buffer

Critical Path
Delay(ns)

8.1 12.06 19.79

3.3.1 Estimating the dimensions of the I/O pad frame:

Total	 chip	 area	 =	 (1.785+(0.3	 *	 2*1.5))	 ^2	 =	 7.21	 mm2	

3.3.2 Comments:
During the Design Budgeting we estimated our time delays assuming that we have just three

multipliers and adders in the matrix_math block. As the project progressed we decided to implement
the VHDL's inbuilt signed multiplier. For signed multiplication extra logic would be required. This is
one of the reasons the Critical Path Delay increased to 12.06 ns in the synthesis which is a reasonable
increase since there are three 16 bit signed multipliers upgraded from the basic multiplier. The SOC
encounter gave a very large increase in the Critical Path Delay . Since our design occupies a large
area and there are several wide buses running across the chips, there are several long wires that cause
long delays.

Even though the timing critical path delay is 19.79ns . We can still run at 10 ns as the only
paths that has a delay greater that 10ns are through the matrix_math. The path through matrix_math
- world_matrix_buffer - matrix_math – screen_buffer is purely combinatorial. The screen_buffer
which shifts the data it gets when the matrix_math signals it to. The matrix_math also chooses the
input that is going to be fed to the multipliers from the world_matrix_buffer and coordinate_buffer.
Now we can get around the 19.76 ns delay by making the matrix_math shift the data into the
screen_buffer only after two clock cycles and keeping the input to the multipliers stable during that
period .

4) Testing

Matrix Math Block

The matrix math block was tested for different kinds of data. First, it was given the appropriate data
with the the point (from the coordinate buffer) and row (from the world matrix buffer) being varied
appropriately to see if the signals row_sel and sel were being asserted at the right times, and the
math_done signal was asserted with the data being strobed out (strb_screen) at the right time (when it
is valid). With these basic tests completed, the actual data was given. Both positive and negative data
was checked. Sample positive calculation : 1 encoded in “fixed decimal” would be 1*256 = 256
which is 100 in hex. Thus “010000000000” represents 1, 0 and 0. Multiply this by the matrix row
0100000000000000 which is equivalent to saying 1*1 + 0*0 + 0*0 + 0 = 1. Now this one is added to
128 to give us 129 or 81 in hex. This is the value that should be shifted out of the math block!
The test bench had this value as well as others. After the positive check was completed, the negative
values were checked in a similar fashion, where an input of -127 (x8100) to the math block with the
identity matrix should just give out 01. After rigorous checking on this as well, the reset and other
options were checked as well, proving the Matrix math block to be sound.
For the output waveforms, check Appendix B.

Rasterizer Block

The rasterizer is essentially a state machine with 8 modes of operation. When it is given a rast_init
signal, the values of the endpoints are guaranteed to be stable. The rasterizer then compares the
magnitude of each pair of values and the magnitude of their differences. It determines from these
comparisons whether the line is “steep” (|slope |> 1) or not and which direction it needs to increment
x and y in order to reach the end point.
To ensure that the rasterizer behaved properly for all of these cases, a test bench was created that
instructed it to draw eight lines, representing all the possible combinations of slope magnitude, draw
direction, and slope sign. The test bench additionally instructed it to draw a line from (0,0) to
(255,255) to ensure there were no issues with long lines or the edges of the screen.
The implementation of this test procedure in a testbench was relatively straightforward, the testbench
needed only to provide the proper X0, Y0, X1, and Y1 values as well as reset, rast_init, and clock.
Initially, the test bench would wait for a rising edge on the rast_done pin before drawing the next line,
but glitches on that pin for the mapped version required manually using a “wait for” statement for
roughly how long the rasterizer took to process each line.

Gpu Controller

The controller orchestrates the operation of the whole GPU, and hence the test bench for this is quite
complex, as all the blocks are involved. The controller is a moderately complicated state machine.
Certain sets of states correspond to each of its duties: receiving opcodes, fetching data from RAM,
instructing the matrix math and rasterizer blocks to run, and writing out the results of the
rasterization. Each one of the controller‟s functions was evaluated separately.

The controller was tested to see if it was getting the data from the correct addresses from the RAM,
as shown in the Appendix. We then tested to ensure that it correctly received the data and strobed the
buffers at appropriate intervals. A particular challenge was balancing the time the controller took to
write rasterized data to RAM and the speed at which the rasterizer works. After many collisions and
misreads, we synchronized the two so that the whole process of rasterization and writeback took only
5 clock cycles to achieve. The waveforms for the tests have been included in the Appendix.

Overall
The top level test bench simply instantiated the GPU and course-provided SRAM and loaded the
RAM with a specific test file corresponding to the input data for the transform matrices and lines to
be drawn. The top level test bench then used Vhdl file I/O to read a file with opcodes and addresses
and output them to the GPU one at a time. The primary challenge of testing the overall design was
generating appropriate memory contents and opcodes to ensure everything was working properly.

Figure 4.1.1- Output of completed program

5) Layout:

Figure 5.1.1- Final Layout

Aspect	
Ratio

1

Height 2.890	

mm
Row	

Utilization

0.6

Area 8.5167	
mm^2

Width

2.948	 mm Total	

Gates

43981

Figure 5.1.2- Layout Information

6) Results:

6.1) Fixed Criteria:

1. Test Benches exist for all top level components and the entire design. The test benches for the
entire design can be demonstrated or documented to cover all of the functional requirements given in
the design specific success criteria.

Status : Completed

2. Entire design synthesizes completely, without any inferred latches, timing arcs or sensitivity list
warnings.

Status : Completed

3. Source and mapped versions of the complete design behave the same for all the test cases. The
mapped version simulates without timing errors except at when the time is zero.

Status : Completed

4. A complete IC layout is produced. The IC layout passes all geometry and connectivity checks.

Status : Completed

5. The total area, including I/O pads, is no more than 3mm * 3mm and the required pin count
(including power and ground) is no more than 40. (Half credit requires 10mm * 10mm and 100 pins)

Status : Completed

6.2) Design Specific Criteria :

1. Demonstrate by simulation of a VHDL test bench that the GPU can properly render a scene stored
in RAM using either an orthographic or a perspective project.

Status : Completed

2. Demonstrate by simulation of a VHDL test bench that the Matrix Math component of the GPU
performs it’s calculations correctly.

Status : Completed

3. Demonstrate by simulation of a VHDL test bench that the Rasterization is working as expected.

Status : Completed

4. Demonstrate by simulation of a VHDL test bench that the interfacing with the external (no on-
board) memory and the Screen Buffer is working.

Status : Completed

Contents:

A. Source Code
B. Test Benches

Appendix A

C. Timing Reports, Area Reports, Connectivity checks etc.
D. Test files and Java files
E. Datasheets

A. Source Code

Description Location

The top level structural VHDL code that is a wrapper for all
the blocks of the design.

source/overall.vhd

This is basically the control unit of the design and is also
responsible for interfacing with the external RAM.

source/gpu_controller.vhd

The block that is responsible for matrix operations on the
given data points.

source/matrix_math.vhd

The shift-register that stores the two points. source/coordinate_buffer.vhd
The shift-register that stores the world transform matrix. source/world_matrix_buffer.vhd
The shift-register that stores the points calulated by the
matrix_math block.

source/screen_buffer.vhd

The block that is responsible for generating the pixel data
to draw a line between the given two points.

source/Rasterizer.vhd

B. Test Benches

Description Location
Testing the top level block . source/tb_overall.vhd
Testing the world_matrix_buffer source/tb_world_matrix_buffer.vhd
Testing the screen_buffer source/tb_screen_buffer.vhd
Testing the coordinate_buffer source/tb_coordinate_buffer.vhd
Testing the gpu_controller source/tb_gpu_controller.vhd
Testing the rasterizer source/tb_rasterizer.vhd
Testing the math block source/tb_matrix_math.vhd

C. Timing Reports, Area Reports, Connectivity checks etc.

Description Location
Timing Report for the overall chip. timingReports/overall_postRoute_all.tar

pt
Timing and Area Report for the Screen Buffer reports/screen_buffer.rep
Timing and Area Report for the Coordinate Buffer reports/coordinate_buffer.rep
Timing and Area Report for the World Matrix Buffer reports/world_matrix_buffer.rep
Timing and Area Report for the Rasterizer reports/Rasterizer.rep
Timing and Area Report for the Matrix math reports/matrix_math.rep
Timing and Area Report for the GPU Controller reports/gpu_controller.rep
Overall Area Report (mapped) reports/overall.rep
Overall Connectivity Report after layout encounter/overall.conn.rpt
Overall Density Report after layout encounter/overall.density.rpt
Overall Gate Count after layout encounter/overall.gateCount
Overall Geometry Report after layout encounter/overall.geom.rpt

D. Test Files and Java Files

Description Location
Inputs to draw a cube source/memcube0.txt
Inputs to draw a diagonal line source/memline1.txt
Inputs to draw a couple of cubes which are scaled and
rotated

source/memcube1.txt

Output from the test bench that is fed to the cube0.java
program to draw the cube (memcube0.txt).

source/meocube0.txt

Output from the test bench that is fed to the line1.java
program to draw the diagonal line (memline1.txt).

source/meoline1.txt

Output from the test bench that is fed to the cube1.java
program to draw a bunch of cubes(memcube1.txt).

source/meocube1.txt

Java program to draw the image from the outputs of the
test-bench (meocube0.txt).

source/cube0.java

Java program to draw the image from the outputs of the
test-bench (meocube1.txt).

source/cube1.java

Java program to draw the image from the outputs of the
test-bench (meoline1.txt).

source/line1.java

A script to run the above java programs . /demo.sh
Opcodes for drawing the object form memcube0.txt /cube0
Opcodes for drawing the object form memcube1.txt /cube1
Opcodes for drawing the object form memline1.txt /memline1
The final presentation slides Presentation/3D_gpu_final.ppt
Accepts an opcode file and outputs a memory contents file source/MatrixGen.java

E. Datasheets

68HCS12 Microcontroller Pinout

MCM343 External SRAM- Similar to course-provided SRAM

Appendix B

Matrix Math Test Waveforms

Figure A.1.1 : The waveform for the positive test data, showing the correct data and the correct number of points
being shifted out.

Figure A.1.2 : The waveform for the negative test data, showing the correct data and the correct number of points
being shifted out.

Rasterizer Test Waveforms

Figure A.2.1 : A standard test case for the rasterizer, drawing a line from (100,100) to (95,110).

The line in this picture falls under the categories of steep (|slope| = 10/5 > 1), right to left, and positive slope. After receiving the start
signal, the rasterizer goes into a four state setup sequence where it differences the x and y values, sets the dx and dy values and
calculates the slope‟s magnitude. Since the slope is larger than 1, it sets steep to 1 in the next state and begins rasterizing at the right
endpoint. After it calculates each point, it asserts rast_strb and moves onto the next one. When it finally reaches the left endpoint, it
sends its address and announces to the controller that it is finished.

Controller Test Waveforms

Figure A.3.1 – Ram Access

Figure A.3.2- Ram Access Zoomed out

Fgireu A.3.3- Overall Testbench output

Figure A.3.4- Zoom in of First Line plotted

Figure A.3.5- First Point Read

Figure A.3.2- Ram Access Zoomed out

Figure A.4.1- Screen Coordinate Buffer

Figure A.5.1-World Matrix Buffer

Figure A.5.1-World matrix Buffer

Figure A.6.1- Coordinate Buffer

Figure A.6.1 Coordinate Buffer

	

